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Abstract: The recent advancement in autonomous robotics is directed toward designing a reliable
system that can detect and track multiple objects in the surrounding environment for navigation and
guidance purposes. This paper aims to survey the recent development in this area and present the
latest trends that tackle the challenges of multiple object tracking, such as heavy occlusion, dynamic
background, and illumination changes. Our research includes Multiple Object Tracking (MOT)
methods incorporating the multiple inputs that can be perceived from sensors such as cameras and
Light Detection and Ranging (LIDAR). In addition, a summary of the tracking techniques, such
as data association and occlusion handling, is detailed to define the general framework that the
literature employs. We also provide an overview of the metrics and the most common benchmark
datasets, including Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI),
MOTChallenges, and University at Albany DEtection and TRACking (UA-DETRAC), that are used
to train and evaluate the performance of MOT. At the end of this paper, we discuss the results
gathered from the articles that introduced the methods. Based on our analysis, deep learning has
introduced significant value to the MOT techniques in recent research, resulting in high accuracy
while maintaining real-time processing.

Keywords: multiple object tracking; MOT; self-driving; autonomous vehicle; autonomous navigation;
SLAM; KITTI; MOTChallenges; MOT15; MOT16; MOT17; UA_DETRAC

1. Introduction

Integrating computer vision and deep learning-based systems in the robotics field
has led to a massive leap in the advancement of autonomous feature. The utilization of
different sensors, such as cameras and LIDARs, and the progress established by the recent
research on processing this data, have introduced multiple object tracking techniques in
autonomous driving and robotics navigation systems. Multiple object tracking has been one
of the most challenging topics researched through computer vision techniques. The reasons
behind this are due to: (1) multiple object tracking (MOT), an essential tool that can be
used in enhancing security and automating robotics navigation, and (2) occlusion, which
is the main obstacle standing in the path of reaching a reliable accuracy and one issue
that is difficult to tackle. In this paper, we aim to survey the different approaches of MOT
introduced recently in autonomous robotics.
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Much research has been done to enhance the performance of tracking in SLAM
applications [1,2]. It is simply difficult to navigate through the environment while the
positions of the robot itself and other objects in the surrounding are neglected. Tracking is
used to estimate the relative location of the robot to other components in the environment.
The most challenging part of this process is the existence of highly dynamic objects [3] such
as people or vehicles. SLAM-based autonomous navigation in robots has been regarded as
essential in development and research primarily because of its potential in many aspects.
One example is the autonomous wheelchair systems reviewed in Refs. [4,5]. The authors
in Ref. [6] provided a survey of the mobile devices that assist people with disability.
Autonomous driving can cause a reduction in the number of accidents that occur due to
fatigue and distractions [7]. Although that might be the case, the public opinion about
autonomous vehicles is hesitant about whether to consider the technology trustworthy.
Providing awareness and understanding of the capabilities of the sensors in autonomous
vehicles to the drivers is vital to reaching the proper employment of the technology in our
daily lives. These sensors should not be disregarded or become entirely dependable on
them [8]. The approach introduced in Ref. [9] aims to reduce the risks firefighters encounter
by deploying a team of UAVs with an MOT system to track wildfires and control the
situation. The authors in Ref. [10] employ MOT to guide a swarm of drones and control
them. Similarly, MOT is utilized with UAV for collision avoidance in Ref. [11]

As has been discussed in Refs. [12–14], the general framework for MOT is shown in
Figure 1. The input frame is subjected to an object detection algorithm. Then, the detections
from the current frame and the previous frames are used to match the similar trajectories
either by motion, appearance, and/or other features. This process would generate tracks
presenting the objects through the sequence of frames. Some data association between
multiple frames is applied to track an object through multiple frames. A reliable MOT
system should be able to handle the new tracks as well as the lost ones. Here, the occlusion
issue is where the lost tracks reappear again because they did not move out of the sensor’s
view but were hidden by other objects.

Figure 1. General framework of MOT systems. Visual and motion features of the detected objects
at frame T are extracted and compared to those detected from previous frames. A robust data
association algorithm would be able to match the features of the same objects. The final output of the
system would be tracked with unique IDs identifying the multiple objects detected and tracked over
the multiple frames.

1.1. Challenges

To effectively perform object tracking, one must develop a robust and efficient model
that the users can effectively use. This section aims to provide a comprehensive overview
of the various challenges facing developing and optimizing such models.
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The first challenge a model must face is the quality of the input video [15]. If the
model cannot process the video properly, it will require additional work to convert it into
a clear form so that it can be used to detect objects. The classification system must first
identify the objects that fall under a particular class. It then gives them IDs based on their
shape and form, which raises the issue that objects of this class come in varying shapes
and sizes [16]. After the objects are detected, they must be assigned IDs with a bounding
box to identify them to ensure that the model can identify multiple similar objects in the
coverage area. The next challenge is to identify the objects that are moving in the ROI of
the camera. This phenomenon can cause the classification system to misclassify the objects
or even identify them as new ones. Aside from the quality of the video input, other factors
that affect the classification of objects are also considered. For instance, the illumination
conditions can significantly influence the model’s accuracy [12–14,16]. The model may not
be able to detect objects that are blunt with the environment or have background conditions.
It also needs to be able to identify them at varying speeds. One of the most challenging
issues in object tracking is the Occlusion issue, where the object movement gets interrupted
by other objects in the scene [12–14,16]. It can be caused by various factors such as natural
conditions or the object’s movement out of the camera’s ROI. Another reason is that other
objects might block the visual of the object if the object is in the camera’s ROI. Therefore,
the system must be trained to identify and track the objects in motion. It also needs to
be able to re-identify the IDs of the captured images with the same ones already used by
the cameras. Figure 2 shows an example of the occlusion issue. The yellow arrow follows
one of the tracks that maintains its ID after experiencing full occlusion. The problem of
occlusion is minimized in bird-eye view tracking [17]. However, other challenges arise,
such as the low resolution of objects and misclassifications. Another obstacle is related to
onboard tracking in self-driving applications. The issue is that the tracking process needs
to be quick and accurate for an efficient assistant driving system. The FPS is one of the
essential factors determining the tracking quality in this case [18].

Figure 2. Preserving the ID during full occlusion. The frames are obtained from the MOT15
dataset [19]. The yellow arrow is pointing towards a track (top image) that experiences full oc-
clusion (middle image). The objective of the MOT system is to preserve the ID of the track (bottom
image) and matches the previously detected object with the reappeared one.
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1.2. Related Work

The authors in Ref. [20] provided a summary of the techniques developed for SLAM-
MOT (combination of SLAM and MOT systems) that utilize the dynamic features to con-
struct 3D object tracking and multi-motion segmentation systems. In Ref. [20], 3D tracking
of dynamic objects techniques was categorized into trajectory triangulation, particle filter,
and factorization-based approaches. The authors in Ref. [20] discussed the data fusion
problem in autonomous vehicles. The perception of data from different sensors such as
RGB cameras, LIDAR, and depth cameras provides more knowledge and understanding
of the surrounding environment and increases the navigation system’s robustness. In
Ref. [20], a survey is conducted on the techniques used for SLAM in autonomous driving
applications and the limitations of the current research. The evaluation in this paper was
done on the KITTI dataset.

The authors in Ref. [12] categorized the MOT approaches into three groups. The first
is the initialization method, which defines whether the tracking would be detection-based
or detection-free. Detection-based tracking or tracking-by-detection is the most common,
where a detected object is connected to its trajectories from future frames. This connection
can be applied by calculating the similarity based on appearance or motion. Detection-free
tracking is where a set of objects is manually localized in the first frame and tracked through
the future. This is not optimal in case new objects appear and is rarely applied. The second
is based on the processing mode, either online or offline tracking. Online tracking is where
objects are detected and tracked in real time. This is more optimal in the case of autonomous
driving applications as offline tracking is where a batch of frames are processed at a low
FPS. The final one is the type of output where it can be stochastic, in which the tracking
varies at different running times, or deterministic, in which the tracking is constant. They
would further define the components that are included in the MOT system. Appearance
model is used to extract spatial information from the detections and then calculate their
similarity. The visual features and representations extracted can be defined either locally
or regionally.

Motion models are used to predict the future location of the detected object and
hence, reduce the inspection area. A good model would have a good estimation after a
certain number of frames as its parameters are tuned towards learning how the object
moves. Linear (constant velocity) and non-linear are the two types of motion models.
Although there has been a rapid advancement in multiple object detection and tracking for
autonomous driving, it is still processing only a few objects. It will be a giant leap forward
to have a system capable of tracking all types of objects in real time. This can be achieved
by generating a great deal of data that tackles the problem at different perceptions such as
camera, LIDAR, ultrasonic, etc. [21]. The issues related to the full deployment of MOT in
autonomous vehicles lie in that its reliability heavily depends on many parameters, such as
the camera view and the type of background (dynamic or static). This leads to difficulty
in being entirely trustful towards MOT in different real scenarios and environments [12].
Tracking pedestrians is a far more difficult task than tracking vehicles whose motion
is bounded by the road compared to the motion of people, which is very random and
challenging for the system to learn. Another issue is the occlusion, which leads to high
fragmentation and ID switches due to losing and re-initializing tracks every time they get
lost. There have been very few systems that comprehensively tackle the problem, which
leaves a huge space for improvements [22].

In Ref. [16], the tracking algorithms are categorized into two groups. The first is
matching-based, which defines how features, such as appearance and motion, are first
extracted and used to measure the similarity in the future frames. The second is filtering-
based tracking, where Kalman and Particle filters are discussed. The authors in Ref. [13]
comprehensively surveyed the deep learning-based methods for MOT. They also provided
an overview of the data in MOTChallenges and the type of conditions included. An eval-
uation of the performance of some methods on this dataset is then listed. In Ref. [14],
the deep learning-based methods for MOT were also reviewed. Similarly, the authors also
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provided an overview of the benchmark datasets, including MOTChallenges and KITTI,
and presented the performance of some methods.

In Ref. [23], the vision-based methods used to detect and track vehicles at road in-
tersections were discussed. The authors categorized those methods depending on the
sensors used and the approach carried out for detection and tracking. On the other hand,
the authors in Ref. [24] presented methods introducing vehicle detection and tracking
in urban areas, and an evaluation was then discussed. UAVs’ role in civil applications,
including surveillance, have been surveyed in Refs. [25,26]. The authors discussed the
characteristics and roles of UAVs in traffic flow monitoring. However, there have not been
many contributions to vehicle tracking methods using an UAV.

The authors in Refs. [7,8], provided a detailed overview of the types of sensors
mounted on autonomous vehicles, such as LIDAR, Ultrasonic, and cameras, for data
perception. They also surveyed the current advancement in the autonomous driving field
commercially and the type of technology associated with that. In Ref. [21], the authors
studied the role of deep learning in autonomous driving including perception and path
planning. In addition to deep learning approaches, a general review was introduced in
Ref. [27]. In Ref. [28], the methods used to extract and match information from multiple
sensors used for perception were reviewed. They also discussed how data association
could be an issue in using multiple sensors to achieve reliable multiple object tracking.
The authors in Ref. [29], surveyed the methods that utilize LIDAR in data perception and
grouped the performance results on the KITTI dataset. Ref. [22] provided a comprehensive
overview of the KITTI dataset’s role in the autonomous driving application. The dataset
can be used for training and testing pedestrians, vehicles, cyclists, and other objects that
can be found on the road. Moreover, the dataset was extended to lane and road marks
detection by Ref. [30].

Although the techniques mentioned above were very thorough in reviewing tech-
niques, we aim in this paper to provide comprehensive research that surveys the techniques
associated with autonomous robotics applications, provides an insight into the different
tracking methods, gathers and compares the results from the different methods discussed
in the paper, and evaluate the current work and find limitations that require future research.
Table 1 lists the recent reviews, the year of publication, and the datasets used for comparing
MOT methods.

Table 1. Recent reviews and the data used for evaluation and comparison.

Review Year Evaluation Dataset

Ciaparrone et al. [13] 2019 MOT 15, 16, 17

Xu et al. [14] 2019 MOT 15, 16

Luo et al. [12] 2022 PETS2009-S2L1

Ours 2022 KITTI, MOT 15, 16, 17, 20 , and UA_DETRAC

Section 2 discusses the state-of-art methods and techniques introduced by the literature.
Section 3 discusses the benchmark datasets and evaluation metrics popularly used by the
research for training and testing. Section 4 presents the evaluation results collected from
the literature and discussion. Finally, Sections 5 and 6 provide the current study challenges
and the future work that is required.

2. Mot Techniques

In this section, we go through the most recent MOT techniques and the common trends
being followed for matching tracks across multiple frames.

Table 2 shows a summary of the components used in MOT techniques. It can be
observed that the appearance cue is rarely neglected. Motion cue also shows presence a lot.
Most approaches depend on deep learning for extracting visual features. CNNs are vital
tools that can extract visual features from the tracks and achieve accurate detections of tracks
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matching [14]. The approaches introduced in Refs. [31,32] use Long Short Term Memory
(LSTM) based networks for motion modeling. LSTM networks are considered in MOT for
appearance and motion modeling as they can find patterns by efficiently processing the
previous frames in addition to the current ones. On the other hand, The authors in Ref. [33]
generated histograms from the detections and used them as the appearance features. As for
data association, the Hungarian algorithm is common with MOT techniques, such as
Refs. [33–36], for associating the current detections with the previous ones, although the
performance of these techniques did not show much potential. Deep learning has rarely
been utilized for data association. However, the best performing technique on MOT16 and
MOT17 datasets relied on a prediction network to validate that the two bounding boxes
are related. For occlusion handling, most approaches rely on feeding the history of tracks
into the tracking system to validate the lost ones. The tracks absent for a specific number of
frames would be considered lost and deleted from the history. This is to avoid processing a
massive number of detections and reducing the FPS.
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Table 2. Summary of the components used in MOT techniques.

Tracker Appearance Cue Motion Cue Data Association Mode
Occlusion
Handling

Keuper et al. [37] - Optical flow Correlation Co-Clustering Online Point trajectories

Fang et al. [38]
fc8 layer of the

inception network
Relative center

coordinates
Conditional Probability Online Track history

Xiang et al. [32] VGG-16 LSTM network Metric Learning Online Track history

Chu et al. [39] CNN - Reinforcement Learning Online SVM Classifier

Zhu et al. [40] ECO -
Dual Matching

Attention Networks
Online

Spatial attention
network

Zhou et al. [41] ResNet50 Linear Model Siamese Networks Online Track history

Sun et al. [42] VGG-like network - Affinity estimator - Track history

Peng et al. [43] ResNet-50 + FPN - Prediction Network Online Track history

Wang et al. [44] FaceNet - Multi-Scale TrackletNet - Track history

Mahmoudi et al. [34] CNN
Relative mean

velocity and position
Hungarian Algorithm Online Track history

Zhou et al. [35] ResNet-50 Kalman Filter Hungarian Algorithm Online Track history

Lan et al. [45] Decoder Relative position Unary Potential Near-online Track history

Zhou et al. [46] - CenterTrack 2D displacement prediction Online Track history

Karunasekera et al. [33] Matching histograms Relative position Hungarian Algorithm Online
Grid Structure
+ Track history

Chu et al. [47] Siamese-style network - R1TA Power Iteration layer Online Track history
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Table 2. Cont.

Tracker Appearance Cue Motion Cue Data Association Mode
Occlusion
Handling

Zhao et al. [36]
CNN + PCA

+ Correlation Filter
- Hungarian Algorithm Online APCE + IoU

Chen et al. [48] Faster-RCNN (VGG16) - Category Classifier Online Track history

Sadeghian et al. [31] VGG16 + LSTM network LSTM network RNN Online Track history

Yoon et al. [49] Encoder - Decoder Online Track history

Xu et al. [50] FairMOT Kalman Filter Hungarian Algorithm Online Track history

Ye et al. [51] LDAE Kalman Filter Cosine Distance Online Track History

Wang et al. [52] Faster-RCNN (ResNet50) Kalman Filter Faster RCNN (ResNet50) Online Track history

Yu et al. [53] DLA-34 + GCD + GTE - Hungarian Algorithm Online Track history

Wang et al. [54] PCB Kalman Filter RTU++ Online Track history

Gao et al. [55] ResNet34 - Depth wise Cross Correlation Online Track history

Nasseri et al. [56] - Kalman Filter Normalized IoU Online Track history

Zhao et al. [57] Transformer + Pixel Decoder Kalman Filter Cosine Distance Online Track history

Aharon et al. [58] FastReID’s SBS-50 Kalman Filter Cosine Distance Online Track history

Seidenschwarz et al. [59] ResNet50 Linear Model Histogram Distance Online Track history

dai et al. [60] CNN - Hungarian Algorithm Online Track history

Zhang et al. [61] FairMOT Kalman Filter IoU + Hungarian Algorithm Online Track history

Hyun et al. [62] FairMOT - Sparse Graph + Hungarian Online Track history
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Table 2. Cont.

Tracker Appearance Cue Motion Cue Data Association Mode
Occlusion
Handling

Chen et al. [63] DETR Network - Hungarian Algorithm Online Track history

Cao et al. [64] -
Kalman Filter

+ non-linear model
+ Smoothing

Observation Centric Recovery Online Track history

Wan et al. [65] YOLOx - Self and Cross Attention Layers Online Track history

Du et al. [66] - NST Kalman Filter + ResNet50 AFLink Online Track history

Zhang et al. [67] ResNet50 Kalman Filter Hungarian Algorithm Online Track history
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The general framework illustrated in Figure 1 is followed by most of the recent MOT
techniques. The most common approach for extracting the visual features of an object is by
using CNN. VGG-16 is very popular for this application, as in Refs. [32,42,48]. The issue
with deploying CNN is the slow computation time due to the high dimensionality output.
Zhao et al. [36] tackled this issue by applying PCA followed by a correlation filter for
dimensionality reduction to the output of the CNN. An encoder with fewer parameters
is introduced in Ref. [49] for faster computation. Another popular network for extracting
appearance features is ResNet-50, as in Refs. [35,41,43], which resulted in a competing
accuracy with fast computation. Peng et al. [43] extracted the appearance features from
different layers of a ResNet-50 network forming a Feature Pyramid Network, which has
the advantage of detecting objects at different scales. The LSTM network is an important
concept for architecture design for processing a sequence of movies. It has been used for
MOT application in multiple approaches such as Refs. [31,32]. The main approach taken
by most current methods is to store the appearance features of the previous frames and
retrieve them for comparison with the ones of the current frame. The important factor that
affects the reliability of this comparison is the updating of the stored features. The object’s
appearance varies through the frames but not significantly between two adjacent frames;
hence, constant updating can lead to a higher matching accuracy.

The second most common feature used for tracking is that related to the object’s
motion. This is specifically useful at full occlusion occurrence. In this case, the object’s
state can change significantly, and the appearance features will not be reliable for matching.
A robust motion model can predict the object’s location even if it disappears from the scene.
The most common approach for motion tracking is the Kalman Filter, as in Refs. [50–52].
The authors in Refs. [34,45] use the relative position between two tracks in two adjacent
frames and decide whether or not the two tracks are of the same object. The authors in
Refs. [31,32,46], use deep learning approaches for motion tracking. The most common
architecture for this approach is the LSTM network. The Kalman filter has a significantly
lower computational cost than the deep learning approaches. The issue with utilizing
only motion models for tracking is the random motion of objects. For instance, motion
models would work better on cars where the motion is limited than on people. Zhou et al.
introduced CenterTrack in Ref. [46] for tracking objects as points. The system is end-to-end,
taking the current and the previous frames and outputting the matched tracks as illustrated
in Figure 3.

Figure 3. The point tracking approach in Ref. [46]. The current and previous frames are passed into
the centerTrack network, which utilize the motion feature to detect and match tracks.
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There are other features used for tracking. The authors in Refs. [56,61], added the IoU
metric between the adjacent frames’ detections to match the two tracks. The tracking of
one object in the scene can be affected by other objects. For this reason, some methods have
introduced the interactivity feature to the tracking algorithm. In Ref. [31], the interactivity
features were extracted from an occupancy map using an LSTM network. The authors in
Ref. [54] used a tracking graph and designed a set of conditions to measure the interactivity
between two objects. Figure 4 illustrates the overview of tracking graph methods. The ap-
proach in Ref. [63], exploited the size and structure as features along with the appearance
and motion for tracking. Increasing the number of features can improve the tracking
process at the cost of computation time. The main issue would be the processing needed to
fuse those features with different dimensionalities. The authors in Refs. [44,68] used IOU
in addition to appearance and motion features to increase the reliability of the tracking.
The authors in Ref. [44] further improved the model by adding epipolar constraints with the
IOU and introduced a tracklenet to group similar tracks into a cluster. Ref. [69] added the
deep_sort algorithm to the extracted features to reduce the unreliable tracks, and Ref. [36]
added a correlation filter tracker to the CNN. Ref. [47] performed a similar approach of
performing feature extraction and matching simultaneously by having affinity estimation
and multi-dimensional assignment in one network. The authors in Refs. [70,71] experi-
mented with 3D distance estimation from RGB frames. In Ref. [70], Poisson multi-Bernoulli
mixture tracking filter was used to perform the 3D projections. In addition to CNN, Ref. [72]
experimented visually with the track’s Gaussian Mixture Probability Hypothesis Density.
The authors in Ref. [37] introduced a motion segmentation framework using motion cues
in addition to the IOU and bounding box clusters for object tracking through multiple
frames. An interesting technique is established in Ref. [33], where one network has the
current and prior frames as inputs and outputs point tracks. Those tracks are given to
a displacement model to measure the similarity. Similarly, another approach to motion
modeling is introduced in Ref. [45] to handle overlapping tracks by using the efficient
quadratic pseudo-Boolean for optimization.

Figure 4. Track tree proposed in Track tree method system overview. The strength of each branch
depends on a score evaluated by the matching algorithm. The green lines indicate matched tracks.
The red circle indicate a lost track.

The features extracted from every detection in the current frame must be associated
with those extracted from the previous frames. The most popular approach taken for data
association in recent years would be the Hungarian algorithm, as in Refs. [50,53,60,63,67].
The advantage of this method is the accuracy accompanied by a fast computation time.
Zhang et al. proposed ByteTrack in Ref. [50], where the Kalman filter is used for predicting
the detection location followed by two levels of association. The first utilizes the appearance
features in addition to the Intersection over Union (IoU) for matching tracks using the
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Hungarian algorithm. The second level of association deals with the weak detections by
utilizing only the IoU with the unmatched tracks remaining from the first level. The authors
in Refs. [31,43,52] use deep learning networks for data association. The authors in Ref. [39]
introduced a model trained using reinforcement learning. The metric learning concept
was used to train the matching model in Ref. [32]. The authors in Ref. [62] take advantage
of the object detection network for feature extraction. This would save computational
costs from applying an appearance feature network on each detection in the current frame.
The approaches in Refs. [43,52] apply the same concept in addition to an end-to-end system
that takes the current frame and previous frames as input and outputs the current frame
with tracks. The hierarchical single-branch network is an example of an end-to-end system
proposed in Ref. [52] as illustrated in Figure 5. The P3AFormer tracker introduced in
Ref. [57] uses the simultaneous detection and tracking framework where a decoder and
a detector extract pixel-level features from the current and previous frames. The features
are passed into a multilayer perceptron (MLP) that outputs the size, center, and class
information. The features are then matched using the Hungarian algorithm. The system
overview of the P3AFormer is shown in Figure 6.

Figure 5. The hierarchical single-branch network proposed in Ref. [52]. The frames from a video
source are passed into the network and outputs detections and tracks.

Figure 6. P3AFormer system overview [57]. The current and previous frames are passed for features
extraction and detection. The extraction module consists of a backbone network, pixel-level decoder,
and a detector, which is illustrated on the right. The features are passed to MLP heads to output the
class, center, and size features.
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The Recurrent Autoregressive Networks (RAN) approach introduced in Ref. [38] de-
fines an autoregressive model that is used to estimate the mean and variance of appearance
and motion features of all associated tracks of the same object stored in the external memory.
The internal memory uses the model generated to compare with all upcoming detections.
The one with the maximum score and above a certain threshold would then be considered
the same object. The external and internal memory would then be updated with the new
associated object. There are two types of independence in this approach. The first is that
the motion and appearance models include different parameters, so they have different
internal and external memories. The second is a new RAN model generated for every new
object detected. The lost tracks are terminated after 20 frames. The visual features are
extracted using the fully connected layer (fc8) of the inception network, and the motion
feature is a 4-dimensional vector representing the width, height, and relative position from
the previous detection. The CTracker framework [43] takes two adjacent frames as inputs
and matches each detection with the other using Intersection over Union calculations.
A constant velocity motion model is used to match the tracks up to a certain number of
frames to handle the reappearance of lost tracks. This approach is end-to-end. It takes two
frames as input and outputs two frames with detections and matching tracks.

The authors in Ref. [33] introduced an approach in which the detections’ dissimilarity
measures are computed and then matched. First is the dissimilarity cost computation. Next,
the histogram of the H and S channels of the HSV colorspace of the previous detections
is compared to the similar histogram of the current detections. A grid structure is used
as in Refs. [73,74]. Hence, multiple histograms are used to match the appearance features.
Furthermore, Linear Binary Pattern Histogram (LBPH), introduced in Ref. [75] and used
for object recognition in Ref. [76], is utilized for computing the structure-based distance.
The predicted and the measured position matching using the L2 norm is added as the
motion-based distance. Finally, IoU calculates the size difference between the current
detections and the previous tracks. The second step is using the Hungarian algorithm [77]
to calculate the overall similarity using the four features calculated in the previous step.

The authors in Ref. [68] proposed V-IoU, an extension of IoU [78], for object tracking.
The objective here is to reduce the number of ID switches and fragmentation by maintaining
the location of lost tracks for a certain number of frames until it appears. A backtrack-
ing technique where the reappeared track is projected backward through the frames is
implemented to validate that the reappeared track is, in fact, the lost one. In Ref. [46],
CenterNet [79] is used to detect objects as points. Centertrack takes two adjacent frames as
inputs in addition to the point detections in the previous frame. The tracks are associated
using the offset between the current and previous point detections. The authors in Ref. [80]
designed a motion segmentation model where the point clusters used for trajectory predic-
tion were placed around the center of the detected bounding box. The approach in Ref. [37]
employs optical flow and correlation co-clustering for projecting trajectory points across
multiple frames, as illustrated in Figure 7.
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Figure 7. Motion segmentation. The trajectory points are projected across multiple frames.

There has been a recent advancement in multiple object tracking and segmentation
(MOTS). This field tackles the issues related to the classic MOT, which are associated with
the utilization of bounding box detection and tracking, such as background noises and loss
of the shape features. The approach introduced in Ref. [81] used an instance segmentation
mask on the extracted embedding. The method in Ref. [82] applies contrastive learning
for learning the instance-masks used for segmentation. An offline approach introduced in
Ref. [83] exploits appearance features for tracking. This method is currently at the top of
the leader board at the MOTS20 challenge [84].

The system can achieve more reliability when utilizing multiple sensors to detect
and track targets in addition to understanding their intentions [28]. The deep learning
approaches are improving and showing promise in the LIDAR datasets. The issue with this
is the bad running time, causing difficulty in real-time deployment [29]. The challenges
facing 3D tracking are related to the fusion of the data perceived from LIDAR and RGB
cameras. Table 3 lists the recent MOT techniques that utilize LIDAR and camera for tracking.

Table 3. Summary of the sensors fusion approaches used in 3D MOT techniques.

Tracker RGB Camera Point Cloud LIDAR Data Fusion Target Tracking

Simon et al. [85] Enet 3D Voxel Quantization Complex-YOLO LMB RFS

Zhang et al. [86] VGG-16 PointNet
Point-wise convolution

+ Start and end estimator
Linear Programming

Frossard et al. [87] MV3D MV3D MV3D Linear Programming

Hu et al. [71] Faster R-CNN 34-layer DLA-up Monocular 3D estimation LSTM Network

Weng et al. [88] ResNet PointNet Addition Graph Neural Network

Sualeh et al. [89] YOLOv3 IMM-UKF-JPDAF 3D projection Munkres Association

Shenoi et al. [90] Mask RCNN F-PointNet 3-layered fully connected network JPDA

Simon et al. [85] proposed complexer-YOLO, illustrated in Figure 8, for RGB and
LIDAR data detection, tracking, and segmentation. A preprocessing step for the point
cloud data input from LIDAR aims to generate a voxalized map of the 3D detections.
The RGB frame is passed into ENet [91], which will output a semantic map. Both maps are
matched and passed into the Complexer-YOLO network to output tracks. The approach in
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Ref. [86] extracts features from the RGB frame and the point cloud data. An end-to-end
approach was introduced in Ref. [87] for dealing with features extraction and fusing from
RGB and Point Cloud Data, as illustrated in Figure 9. Point-wise convolution in addition to
a start and end estimator are utilized for fusing both types of data to be used for tracking.

Figure 8. Complexer-YOLO [85]. Data from RGB frame and point cloud data are mapped and passed
into Complexer-YOLO for tracking and matching.

Figure 9. An end-to-end approach for 3D detection and tracking [87]. The RGB and point cloud
data are passed into a detection network. Matching and scoring nets are then trained to generate
trajectories across multiple frames.
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3. Mot Benchmark Datasets and Evaluation Metrics

In this section, we review the most common datasets that are used for training and
testing MOT techniques. We also provide an overview of the metrics used to evaluate the
performance of these techniques.

3.1. Benchmark Datasets

Most research done in multiple object tracking uses standard datasets for evaluating
the state of art techniques. In this way, we have a better view of what criteria, the new
methodologies, have shown superiority. For this application, everyday moving objects
could be pedestrians, vehicles, cyclists, etc. The most common datasets that provide a
variation of those objects in the streets are the MOTChallenge collection and KITTI.

• MOTChallenge: The most common datasets in this collection are the MOT15 [19],
MOT16 [92], MOT17 [92], and MOT20 [93]. There is a newly created set, MOT20, but it
has not yet become a standard for evaluation in the research community to our current
knowledge. The MOT datasets contain some data from existing sets such as PETS and
TownCenter and others that are unique. Examples of the data included are presented
in Table 4, where the amount of variation included in the MOT15 and MOT16 can be
observed. Thus, the dataset is useful for training and testing using static and dynamic
backgrounds and for 2D and 3D tracking. An evaluation tool is also given with the set
to measure all features of the multiple object tracking algorithm, including accuracy,
precision, and FPS. The ground truth data samples are shown in Figure 10.

Table 4. Examples of the types of data included in MOT15 and MOT16.

Dataset Sequences Length Tracks FPS Platform ViewPoint Density Weather

MOT 2015

TUD-Crossing 201 13 25 static horizontal 5.5 cloudy
PETS09-S2L2 436 42 7 static high 22.1 cloudy
ETH-Jelmoli 440 45 14 moving low 5.8 sunny

KITTI-16 209 17 10 static horizontal 8.1 sunny

MOT 2016

MOT16-01 450 23 30 static horizontal 14.2 cloudy
MOT16-03 1500 148 30 static high 69.7 night
MOT16-06 1194 221 14 moving low 9.7 sunny
MOT16-12 900 86 30 moving horizontal 9.2 indoor

Figure 10. Samples from MOT 15-17 ground truth dataset. Samples of MOT15 (top image), MOT16
(middle image), and MOT17 (bottom image).
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• KITTI [94]: This dataset is created specifically for autonomous driving. It was collected
by a car driven through the streets with multiple sensors mounted for data collection.
The set includes PointCloud data collected using LIDAR sensors and RGB video
sequences captured by monocular cameras. It has been included in multiple research
related to 2D and 3D multiple object tracking. Samples of the pointcloud and RGB
data included in the KITTI dataset are shown in Figure 11.

Figure 11. Samples of the KITTI dataset including Pointcloud and RGB. Visual odometry trajectory
(top left), disparity and optical flow map (top right), visualized point cloud data [95] (middle),
and 3D labels (bottom).

• UA-DETRAC [96–98]: The dataset includes videos sequences captured from static
cameras looking at the streets at different cities. A huge amount of labeled vehicles
can assist in training and testing for static background multiple object tracking in
surveillance and autonomous driving. Samples of the UA-DETRAC dataset at different
illumination conditions can be shown in Figure 12.

Figure 12. Samples of the UA-DETRAC dataset showing variation of illumination in the environment
from a static camera.

3.2. Evaluation Metrics

The most common evaluation metrics are the CLEAR MOT metrics, which were
developed by Refs. [22,23]. Mostly tracked objects (MT) and mostly lost objects (ML) in
addition to IDF1 are uses to present the leaderboards in MotChallenges. False Positives
(FP) is the number of falsely detected objects. false Negatives (FN) the number of falsely
undetected objects. Fragmentation (Fragm) is the number of times a track gets interrupted.
ID Switches (IDSW) is the number of times an ID changes. Multiple Object Tracking
Accuracy (MOTA) is given by (1), whereas Multiple Object tracking Precision (MOTP) is
given by (2). Finally, frames per second (Hz) and IDF1 given by (3).

MOTA = 1− (FN + FP + IDSW)

GT
(1)
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where GT is the total number of ground truth labels.

MOTP =
∑t,i dt,i

∑t ct
(2)

where c is the number of matches in t frame and d is the correctly overlapping detections
and tracks.

Identi f icationF1(IDF1) =
1

1
IDP + 1

IDR
(3)

where identification precision is defined by:

IDP =
IDTP

IDTP + IDFP
(4)

and identification recall is defined by:

IDR =
IDTP

IDTP + IDFN
(5)

IDTP is the sum of true positives edges weights, IDFP is the sum of false positives edges
weights, and IDFN is the sum of false negatives edges weights

The metrics used for evaluating on the UA_DETRAC dataset utilize the precision
recall (PR) for calculating the CLEAR metrics, as introduced in Ref. [96]. In addition to
these metrics, the HOTA metric introduced in Ref. [99] is calculated by the formula in (6).∫

0<α≤1
HOTAα (6)

where √
∑cεTPα

(Ass_IoU)α(c))
|TPα|+ |FNα|+ |FPα|

(7)

where

Ass_IoU =
|TPA|

|TPA|+ |FNA|+ |FPA| (8)

where TPA, FNA, and FPA are the association metrics.
There has been a recent advancement in the multiple object tracking and segmentation

(MOTS). This field tackles the issues related to the classic MOT which are associated with
the utilization of bounding box detection and tracking such as background noises and loss
of the shape features. The MOTS20 Challenge [84] proposed metrics for evaluating methods
that tackle this issue. The multi-object tracking and segmentation accuracy (MOTSA) is
calculated using the formula in (9). Similarly, multi-object tracking and segmentation
precision (MOTSP) and soft multi-object tracking and segmentation accuracy (sMOTSA)
are found by the formulas in (10) and (11), respectively.

MOTSA = 1− (|FN|+ |FP|+ |IDSW|)
|M| (9)

where M is the ground truth masks.

MOTSP =
T̃P
|TP| (10)

where T̃P is the soft version true positives (TP).

sMOTSA =
T̃P− |FP| − |IDSW|

|M| (11)
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4. Evaluation and Discussion

In this section, we compare the MOT techniques based on the dataset used for evalua-
tion. Then, analysis and discussion are conducted to provide insight for future work.

The performance of the most recent MOT techniques on MOT15, 16, 17, and 20 datasets are
shown in Table 5. The ↑ stands for higher is better, and ↓ stands for lower is better. The protocol
indicates the type of detector used for evaluating the results. The dataset provides the public
detector and is typical for all methods. The private detector is designed by the method and
is not shared. In MOT15, the tracker introduced in Ref. [38] has the highest accuracy and the
lowest identity switches (IDs). It also maintained the highest percentage of tracks (MT) and
has the lowest percentage of lost ones (ML). On the other hand, it had a significantly higher
number of false positives and negatives compared to the method introduced in Ref. [42], which
also performed with the highest FPS (Hz). The authors in Ref. [36] evaluated their system
using the private detector protocol and have significantly lower fragmentation than all other
methods. In Ref. [38], the tracker relied on appearance features extracted from the inception
network layer and the position of the detections. The association process was done using
conditional probability. The approach in Ref. [48] has the second best accuracy, where the
motion features and the appearance features were used, as well as a category classifier for
the association. The method with the lowest accuracy [80] only relied on the motion features,
and the slowest performing method [39], where reinforcement learning was applied for data
association. The approach in Ref. [62] has the highest accuracy on the MOT16 dataset using the
private detector protocol. The method in Ref. [53] also used the private detector and has the
highest HOTA. Both methods relied on appearance features for tracking and incorporated the
Hungarian algorithm for matching. Similarly, a significantly faster-performing method [38]
with slightly lower accuracy only used the appearance features and a prediction network for
the association. The method in Ref. [35] used the Kalman filter for motion feature prediction
and the appearance features extracted from the detection network for tracking. This method
has a lower accuracy in comparison to other methods. In MOT17, the approach with the highest
accuracy [57] has a significantly higher fragmentation than the one introduced in Ref. [64],
which only used the motion feature for tracking. The method in Ref. [67] has slightly lower
accuracy but with an acceptable FPS. This method used the appearance and motion features in
addition to the Hungarian algorithm for matching. The approaches in Refs. [56,58] have an
acceptable accuracy where both used Kalman filter for motion tracking and Ref. [56] neglected
the appearance features. The method in Ref. [64] has the lowest number of fragmentation and
only uses the motion features in tracking. The method in Ref. [57] has the highest accuracy
on MOT20, although it has a significantly higher number of fragmentation compared to the
one in Ref. [54]. The approach in Ref. [67] has the highest FPS, followed by the one in Ref. [54].
All of these methods relied on visual and motion features for tracking. The methods in
Refs. [58,67] only used the motion features and had an acceptable accuracy. On the other hand,
the ones that only relied on the visual features, such as Refs. [60,62,63,65] did not perform well
according to the accuracy and other metrics. This evaluation shows that appearance features
are essential for high accuracy, and other cues are used to boost performance. Based on the
results from Table 5 and the summary presented in Table 2, the utilization of deep learning
for data association reduces the processing time, as can be observed from Refs. [43,49]. On the
other hand, including motion cues in the system drops the FPS significantly compared to only
using the visual features as indicated by the results in Ref. [32]. Although adding complexity
to the system drops the FPS, the IDS metric significantly improves when the motion features
are included in the system. It can be concluded from these findings that to improve the FPS
and the accuracy one should use deep learning in all MOT components. Although that might
be the case, the end-to-end approaches introduced in Refs. [32,48] have used deep learning to
extract appearance and motion features and data association, and the performance did not
compete with other approaches. Deep learning approaches are data-driven, which means they
are suitable for specific tasks but unsuitable or expected to perform poorly in real scenarios
due to the variation from the data used in training [13].
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Table 5. The performance using the MOT15, 16, 17, and 20 datasets.

Dataset Tracker MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ Frag ↓ Hz ↑ HOTA ↑ Protocol

MOT15

Chen et al. [48] 53.0 75.5 29.1 20.2 5159 22,984 708 1476 Private
Chen et al. [48] 38.5 72.6 8.7 37.4 4005 33,204 586 1263 Public

Sadeghian et al. [31] 37.6 71.7 15.8 26.8 7933 29,397 1026 2024 1 Public
Keuper et al. [37] 35.6 45.1 23.2 39.3 10,580 28,508 457 969 Private

Fang et al. [38] 56.5 73.0 61.3 45.1 14.6 9386 16,921 428 1364 5.1 Public
Xiang et al. [32] 37.1 72.5 28.4 12.6 39.7 8305 29,732 580 1193 1.0 Private
Chu et al. [39] 38.9 70.6 44.5 16.6 31.5 7321 29,501 720 1440 0.3 Public
Sun et al. [42] 38.3 71.1 45.6 17.6 41.2 1290 2700 1648 1515 6.3 Public

Zhou et al. [46] 30.5 71.2 1.1 7.6 41.2 6534 35,284 879 2208 5.9 Private
Dimitriou et al. [80] 24.2 70.2 7.1 49.2 6400 39,659 529 1034 Private

MOT16

Yoon et al. [49] 22.5 70.9 25.9 6.4 61.9 7346 39,092 1159 1538 172.8 Public
Sadeghian et al. [31] 47.2 75.8 14.0 41.6 2681 92,856 774 1675 1.0 Public

Keuper et al. [37] 47.1 52.3 20.4 46.9 6703 89,368 370 598 Private
Fang et al. [38] 63 78.8 39.9 22.1 13,663 53,248 482 1251 Public
Xiang et al. [32] 48.3 76.7 15.4 40.1 2706 91,047 543 0.5 Private
Zhu et al. [40] 46.1 73.8 54.8 17.4 42.7 7909 89,874 532 1616 0.3 Private

Zhou et al. [41] 64.8 78.6 73.5 40.6 22.0 13,470 49,927 794 1050 18.2 Private
Chu et al. [39] 48.8 75.7 47.2 15.8 38.1 5875 86,567 906 1116 0.1 Public
Peng et al. [43] 67.6 78.4 57.2 32.9 23.1 8934 48,305 1897 34.4 Private

Henschel et al. [100] 47.8 47.8 19.1 38.2 8886 85,487 852 Private
Wang et al. [44] 49.2 56.1 17.3 40.3 8400 83,702 882 Public

Mahmoudi et al. [34] 65.2 78.4 32.4 21.3 6578 55,896 946 2283 11.2 Public
Zhou et al. [35] 40.8 74.4 13.7 38.3 15,143 91,792 1051 2210 6.5 Private
Lan et al. [45] 45.4 74.4 18.1 38.7 13,407 85,547 600 930 Public
Xu et al. [50] 74.4 73.7 46.1 15.2 60.2 Private
Ye et al. [51] 62.8 79.4 63.1 34.4 17.2 12,463 54,648 701 983 Private

wang et al. [52] 50.4 47.5 18,370 69,800 1826 Private
Yu et al. [53] 75.6 80.9 75.8 43.1 21.5 9786 34,214 448 61.7 Private
Dai et al. [60] 63.8 70.6 30.3 30.6 7412 57,975 629 11.2 54.7 Private

Hyun et al. [62] 76.7 73.1 49.1 10.7 10,689 30,428 1420 Private
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Table 5. Cont.

Dataset Tracker MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ Frag ↓ Hz ↑ HOTA ↑ Protocol

MOT17

Keuper et al. [37] 51.2 20.7 37.4 24,986 248,328 1851 2991 Private
Zhu et al. [40] 48.2 75.9 55.7 19.3 38.3 26,218 263,608 2194 5378 11.4 Private
Sun et al. [42] 52.4 53.9 76.9 49.5 21.4 25,423 234,592 8431 14,797 6.3 Public

Peng et al. [43] 66.6 78.2 57.4 32.2 24.2 22,284 160,491 5529 34.4 Private
Henschel et al. [100] 51.3 47.6 21.4 35.2 24,101 247,921 2648 Private

Wang et al. [44] 51.9 58.0 23.5 35.5 37,311 231,658 2917 Public
Henschel et al. [101] 52.6 50.8 19.7 35.8 31,572 232,572 3050 3792 Private

Zhou et al. [46] 61.5 59.6 26.4 31.9 14,076 200,672 2583 Private
Karunasekera et al. [33] 46.9 76.1 16.9 36.3 4478 17.1 Private

Xu et al. [50] 73.1 73.0 45 16.8 59.7 Private
Ye et al. [51] 61.7 79.3 62.0 32.5 20.1 32,863 181,035 1809 3168 Private
Yu et al. [53] 73.8 81.0 74.7 41.7 23.2 27,999 118,623 1374 61.0 Private

Wang et al. [54] 79.5 79.1 29,508 84,618 1302 2046 24.7 63.9 Private
Gao et al. [55] 70.2 65.5 43.1 15.4 30,367 115,986 3265 10.7 Private

Nasseri et al. [56] 80.4 77.7 28,887 79,329 2325 4689 63.3 Private
Zhao et al. [57] 81.2 78.1 54.5 13.2 17,281 86,861 1893 Private

Aharon et al. [58] 80.5 80.2 22,521 86,037 1212 4.5 65.0 Private
Seidenschwarz et al. [59] 61.7 64.2 26.3 32.2 1639 50.9 Private

Dai et al. [60] 63.0 69.9 30.4 30.6 23,022 183,659 1842 10.8 54.6 Private
Zhang et al. [61] 62.1 65.0 24,052 188,264 1768 Public
Zhang et al. [61] 77.3 75.9 45,030 79,716 3255 Private
Hyun et al. [62] 76.5 73.6 47.6 12.7 29,808 99,510 3369 Private
Chen et al. [63] 76.5 72.6 59.7 Private
Cao et al. [64] 78.0 77.5 15,100 108,000 1950 2040 63.2 Private
Wan et al. [65] 67.2 66.5 38.3 20.5 17,875 164,032 2896 Public
Wan et al. [65] 75.6 76.4 48.8 16.2 26,983 108,186 2394 Private
Du et al. [66] 79.6 79.5 1194 7.1 64.4 Private

Zhang et al. [67] 80.3 77.3 25,491 83,721 2196 29.6 63.1 Private
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Table 5. Cont.

Dataset Tracker MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ Frag ↓ Hz ↑ HOTA ↑ Protocol

MOT20

Xu et al. [50] 59.7 67.8 66.5 7.7 54.0 Private
Ye et al. [51] 54.9 79.1 59.1 36.2 23.5 19,953 211,392 1630 2455 Private

Wang et al. [52] 51.5 44.5 38,223 208,616 4055 Private
Yu et al. [53] 67.2 79.2 70.5 62.2 8.9 61,134 104,597 4243 56.5 Private

Wang et al. [54] 76.5 76.8 19,247 101,290 971 1190 15.7 62.8 Private
Nasseri et al. [56] 76.8 76.4 27,106 91,740 1446 3053 61.4 Private

Zhao et al. [57] 78.1 76.4 70.5 7.4 25,413 86,510 1332 Private
Aharon et al. [58] 77.8 77.5 24,638 88,863 1257 2.4 63.3 Private

Seidenschwarz et al. [59] 52.7 55.0 29.1 26.8 1437 43.4 Private
Dai et al. [60] 60.1 66.7 46.5 17.8 37,657 165,866 2926 4.0 51.7 Private

Zhang et al. [61] 55.6 65.0 12,297 216,986 480 Public
Hyun et al. [61] 66.3 67.7 41,538 130,072 2715 Private
Hyun et al. [62] 72.8 70.5 64.3 12.8 25,165 112,897 2649 Private
Chen et al. [63] 67.1 59.1 50.4 Private
Cao et al. [64] 75.5 75.9 18,000 108,000 913 1198 63.2 Private
Wan et al. [65] 70.4 71.9 65.1 9.6 48,343 101,034 3739 Private
Du et al. [66] 73.8 77.0 25,491 83,721 2196 1.4 62.6 Private

Zhang et al. [67] 77.8 75.2 26,249 87,594 1223 17.5 61.3 Private
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Similarly, the performance of the KITTI dataset is shown in Table 6. The dataset
is divided into multiple sequences: car, pedestrian, and cyclist. The methods are either
evaluated on all of them combined or individually. As it can be observed, the pedestrian
data are the most difficult to process with a good performance. Only methods evaluated on
all sequences are used for comparison, and accordingly, the values corresponding to the
best performance according to the metric are in bold. The rest are listed for observation
and analysis. The approach introduced in Ref. [46] showed superiority. Although it
did not perform well on the MOT15 dataset, it showed a competing performance on the
MOT17 dataset. The authors in Ref. [102] evaluated the proposed technique on each
sequence individually. They have superior performance on all of them. The performance
on the UA_DETRAC dataset is shown in Table 7. Although the UA_DETRAC dataset is
of a static background type and does not include the challenge of dynamic background,
the approach introduced in Ref. [47] performed better on the KITTI dataset. This variation
in the performance of the MOT techniques on multiple datasets may indicate that the MOT
techniques are data driven and difficult to generalize. Similar to 2D Tracking, the deep
learning approach is utilized for visual feature extraction in 3D. For processing point
cloud data, PointNet is the most popular method. The authors in Refs. [85,89] did not
rely on deep learning for techniques for the processing of point cloud data and performed
poorly in terms of accuracy on the KITTI dataset shown in Table 6. The approach with
the highest accuracy in Table 3 introduced in Ref. [86] creates multiple solutions for data
fusion problems. The features extracted from LIDAR and camera sensors are fused by
concatenation, addition, or weighted addition and then passed into a custom-designed
network to calculate the correlation between the features and output the linked detections.
The approaches that depend on deep learning for data fusion, Refs. [85,87,90], have a low
MOTA, although [90] has high accuracy on the car set. The localization-based Tracking
introduced in Ref. [103] has the best accuracy on the UA_DETRAC dataset. Although the
DMM-Net method in Ref. [104] has significantly lower accuracy, it showed superiority in
identity switches and fragmentation.

Table 6. The performance using the KITTI dataset. We have marked the highest scores in bold for
methods evaluated on all categories.

Tracker MOTA ↑ MOTP ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ Frag ↓ Type

Chu et al. [47] 77.1 78.8 51.4 8.9 760 6998 123 Car
Simon et al. [85] 75.7 78.5 58.0 5.1 All
Zhang et al. [86] 84.8 85.2 73.2 2.77 711 4243 284 753 All

Scheidegger et al. [70] 80.4 81.3 62.8 6.2 121 613 Car
Frossard et al. [87] 76.15 83.42 60.0 8.31 296 868 All

Hu et al. [71] 84.5 85.6 73.4 2.8 705 4242 All
Weng et al. [88] 82.2 84.1 64.9 6 142 416 Car
Zhao et al. [36] 71.3 81.8 48.3 5.9 All

Weng et al. [102] 86.2 78.43 0 15 Car
Weng et al. [102] 70.9 Pedestrian
Weng et al. [102] 84.9 Cyclist
Luiten et al. [105] 84.8 681 4260 275 Car
Wang et al. [106] 68.2 76.6 60.6 12.3 111 725 All
Sualeh et al. [89] 78.10 79.3 70.3 9.1 21 111 Car
Sualeh et al. [89] 46.1 67.6 30.3 38.7 57 500 Pedestrian
Sualeh et al. [89] 70.9 77.6 71.4 14.3 3 24 Cyclist
Shenoi et al. [90] 85.7 85.5 98 Car
Shenoi et al. [90] 46.0 72.6 395 Pedestrian
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Table 6. Cont.

Tracker MOTA ↑ MOTP ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ Frag ↓ Type

Zhou et al. [46] 89.4 85.1 82.3 2.3 116 744 All
Karunasekera et al. [33] 85.0 85.5 74.3 2.8 301 All

Zhao et al. [57] 91.2 86.5 2.3 Car
Zhao et al. [57] 67.7 49.1 14.5 Pedestrian

Aharon et al. [58] 90.3 250 280 Car
Aharon et al. [58] 65.1 204 609 Pedestrian
Wang et al. [107] 90.4 85.0 84.6 7.38 2322 962 Car
Wang et al. [107] 52.2 64.5 35.4 25.4 1112 2560 Pedestrian
Sun et al. [108] 86.9 85.7 83.1 2.9 271 254 Car

Table 7. The performance using the UA_DETRAC dataset.

Dataset Tracker PR-MOTA ↑ PR-MOTP ↑ PR-MT ↑ PR-ML ↓ PR-FP ↓ PR-FN ↓ PR-IDS ↓ PR-FRAG ↓

UA_DETRAC

Bochinski et al. [68] 30.7 37 32 22.6 18,046 179,191 363 1123
Kutschbach et al. [72] 14.5 36 14 18.1 38,597 174,043 799 1607

Hou et al. [69] 30.3 36.3 30.2 21.0 20,263 179,317 389 1260
Sun et al. [42] 20.2 26.3 14.5 18.1 9747 135,978
Chu et al. [47] 19.8 36.7 17.1 18.2 14,989 164,433 617

Gloudemans et al. [103] 46.4 69.5 41.1 16.3
Sun et al. [104] 12.2 10.8 14.9 36,355 192,289 228 674

Messoussi et al. [109] 31.2 50.9 28.1 18.5 6036 170,700 252
Wang et al. [110] 22.5 35.2 15.5 10.1 1563 3186

Navigation and self-driving applications in robotics depend on the online feature.
The system must be able to react in real time. Although most of the techniques discussed can
process video sequences online, their FPS is not showing robust performance, according to
the Hz metric, to be deployed in an application such as self-driving. The method introduced
in Ref. [43] has the highest FPS overall and acceptable accuracy on the MOT16 and MOT17
datasets. However, the research utilizing LIDAR and RGB cameras show potential in
robotics navigation and autonomous driving applications.

5. Current Research Challenges

Through this study, we gained insight into the current trends of online MOT methods
that can be utilized in robotics applications and the challenges faced. The first challenge
would be the online feature. The MOT algorithm should be able to operate in real-time for
most robotics applications in order to be able to react to environmental change. The second
challenge would be the accurate track trajectory across multiple frames. The lack of this
problem can cause multiple identity switches and difficulty keeping a concise description
of the surroundings. In addition, the issue is segmenting the detections at pixel level and
tracking them. The bounding box provides wrong information about the object in shape
and size, along with noises from the background. Finally, the motion feature has proven
its value in tracking, but it is not simple to track random moving objects such as people,
animals, cyclists, etc.

6. Future Work

The final objective of the research done on deploying MOT algorithms in autonomous
robots is to have a reliable system that contributes to reducing accidents and facilitating
tasks that might be difficult for humans to carry out. One aspect that we found the current
research lacks is the generation of a new benchmark dataset that includes data collected
by the standard sensors employed by the current industry. Sensors such as ultrasonic
and LiDar are essential in today’s autonomous robot manufacturing, and it is necessary
to use the same tools to make the research on MOT up-to-date. Moreover, using deep
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learning algorithms for detection and tracking would face a massive problem due to the
risk of meeting a variation that was not included in the training set. Thus, deep learning
should be trained on segmenting the road regions and hence, be trained on any area before
deployment. This is one of the approaches that can be researched to tackle the problem of
dealing with new objects. The current research looks at appearance and motion models as
necessary in MOT. They are further going into learning the behavior of objects in the scenes
and the interactivity between those objects. For instance, two objects moving towards
each other would lead to one of them getting covered, and a track would be lost. As the
MOT system’s complexity increases, it becomes more challenging to work in real-time.
The research on embedded processors that can be utilized in autonomous robots will
significantly contribute to increasing the accuracy while maintaining the online feature.

7. Conclusions

This paper aims to review the current trends and challenges related to the MOT for
autonomous robotics applications. This area of study has been frequently researched
recently due to its high potential and standards, which are difficult to achieve. The paper
has discussed and compared the MOT techniques through a common framework and
datasets, including MOTChallenges, KITTI, and UA_DETRAC. There is a vast area left to
explore and investigate as well as multiple approaches created by the literature that has
the potential to build into reliable and robust techniques. A summary of the components
utilized in the general MOT framework, including appearance and motion cues, data
association, and occlusion handling, has been listed and studied. In addition, the popular
methods used for data fusion between multiple sensors, focusing on the camera and LIDAR,
have been reviewed. The role that deep learning techniques are utilized in MOT approaches
has been investigated thoroughly using quantitative analysis to evaluate its limitations and
strong points.
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Abbreviations
The following abbreviations are used in this manuscript:

MOT Multiple Object Tracking
LIDAR Light Detection and Ranging
KITTI Karlsruhe Institute of Technology and Toyota Technological Institute
UA-DETRAC University at Albany DEtection and TRACking
SLAM Simultaneous localization and mapping
ROI Region of Interest
IoU Intersection over Union
HOTA Higher Order Tracking Accuracy
SLAMMOT Simultaneous localization and mapping Multiple Object Tracking
RTU Recurrent Tracking Unit
LSTM Long Short Term Memory
ECO Efficient Convolution Operators
PCA Principal Component Analysis
LDAE Lightweight and Deep Appearance Embedding
DLA Deep Layer Aggregation
GCD Global Context Disentangling
GTE Guided Transformer Encoder
DETR DEtection TRansformer
PCB Part-based Convolutional Baseline
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